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SUMMARY

This paper presents various �nite di�erence schemes and compare their ability to simulate instability
waves in a given �ow �eld. The governing equations for two-dimensional, incompressible �ows were
solved in vorticity–velocity formulation. Four di�erent space discretization schemes were tested, namely,
a second-order central di�erences, a fourth-order central di�erences, a fourth-order compact scheme and
a sixth-order compact scheme. A classic fourth-order Runge–Kutta scheme was used in time. The in-
�uence of grid re�nement in the streamwise and wall normal directions were evaluated. The results
were compared with linear stability theory for the evolution of small-amplitude Tollmien–Schlichting
waves in a plane Poiseuille �ow. Both the ampli�cation rate and the wavenumber were considered as
veri�cation parameters, showing the degree of dissipation and dispersion introduced by the di�erent
numerical schemes. The results con�rmed that high-order schemes are necessary for studying hydro-
dynamic instability problems by direct numerical simulation. Copyright ? 2005 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In many applications the ability to predict whether a given �ow is laminar or turbulent is
crucial, since heat transfer rates and skin friction coe�cients are much larger in turbulent �ows.
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The knowledge of the �ow regime whether, laminar, transitional or turbulent, is necessary for
the correct design of aerodynamic surfaces or cooling systems. In certain situations it is even
desirable to control the evolution of a laminar �ow in order to delay transition and reduce
viscous drag [1–3].
The direct numerical simulation (DNS) of the Navier–Stokes equations for studying stability

and transition is becoming more feasible with the increasing capacity of modern computational
resources. Di�erent approaches have been presented in the literature [4–7] and a common
factor among them is the use of high-resolution discretization methods [8]. This is because
the numerical study of hydrodynamic stability and transition to turbulence requires the correct
representation of a range of spatial and time scales. Spectral methods can be used to assure
that all relevant scales are captured, but higher order �nite di�erences are also able to represent
short length scales with good accuracy. Lele [9] emphasizes the importance of using high-
order methods for these �ows and shows schemes for �rst and second derivatives of second
to tenth order. Mahesh [10] shows higher order �nite di�erence schemes, and a scheme that
is more accurate than the standard Pad�e schemes using the same stencil. The disadvantage
of this method is that it requires the solution of �rst and second derivatives simultaneously.
Hirsh [11] and Adam [12] also discuss some advantages of a fourth-order compact method
compared to standard methods.
Another relevant aspect to be considered in direct numerical simulation of stability and

transition problems is grid re�nement. Coarse-grid simulations can result in arti�cial dissipa-
tion.
In the current study, a formulation based on the vorticity–velocity variables [13–17] was

adopted. The growth of instability modes in a two-dimensional Poiseuille incompressible �ow
was simulated. The disturbances introduced in the �ow �eld can grow, decay or stay constant
depending on the Reynolds number and frequency.
The emphasis in this paper is on inferring what degree of resolution is needed to capture

reliably the instantaneous structure of a disturbed �ow. Only the linear propagation of the
disturbances were analysed, since the exact solution from linear stability theory is available.
In Section 2, the governing equations are derived, and the details of the numerical methods are
described. The time and spatial discretization used are also shown in this section. The four
di�erent schemes used to discretize spatial derivatives are presented, namely, second-order
explicit central di�erence schemes, fourth-order explicit central di�erence schemes, fourth-
order implicit (compact) central di�erence schemes and sixth-order implicit (compact) central
di�erence schemes. Section 3 presents details of the linear stability analysis for plane Poiseuille
�ows. In Section 4, the results of the propagation of a stable, a neutral and an unstable
disturbances using a sixth-order compact method are given. Then, simulations using the other
three approaches for spatial derivatives are also presented for a neutral disturbance. Section 5
presents the conclusions and �nal comments.

2. FORMULATION AND NUMERICAL METHOD

For the numerical solution, the Navier–Stokes equations were written in the vorticity–velocity
formulation. The vorticity in the spanwise direction, denoted by !z, is

!z=
@u
@y

− @v
@x

(1)
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In two-dimension, the vorticity transport equation is given by

@!z
@t

+ u
@!z
@x

+ v
@!z
@y

=
1
Re

(
@2!z
@x2

+
@2!z
@y2

)
(2)

while the continuity equation is

@u
@x
+
@v
@y
=0 (3)

From the vorticity equation (1) and the continuity equation (3) a Poisson-type equation for
the v velocity component can be derived:

@2v
@x2

+
@2v
@y2

=−@!z
@x

(4)

Equations (2)–(4) were solved numerically and the solution was marched in time according
to the following steps:

(i) Impose initial conditions for u, v and !z compatible with each other.
(ii) Introduce disturbances at the inlet boundary, using eigenfunctions obtained from solv-

ing the Orr–Sommerfeld equation for the Poiseuille �ow.
(iii) Calculate the vorticity from the vorticity transport equation (2), at time t + dt.
(iv) Calculate the v velocity component from the Poisson equation (4).
(v) Calculate the u velocity component from the continuity equation (3).
(vi) Calculate the vorticity generation at the wall for the velocity distribution at t + dt,

using Equation (4) and taking into account that @2v=@x2 = 0.
(vii) Return to the second step (ii) until the desired integration time was reached.

The time derivative in the vorticity transport equation was discretized with a classical fourth-
order Runge–Kutta integration scheme [18]. For each intermediate step in the Runge–Kutta
integration it was necessary to update the velocity �eld and the vorticity at the wall by taking
steps (iv)–(vi) in the steps described above.
For the spatial derivatives four di�erent schemes were used. The discretization used for

each method is presented below, taking the derivatives in x direction as an example, since it
was analogous to the y derivatives. The letter i represents the grid position in the x direction,
which varies from 1 to N .

2.1. Second-order di�erence schemes

For 1¡i¡N :

f′
i =

fi+1 − fi−1
2 dx

+O(dx2) (5)

f′′
i =

fi+1 − 2fi + fi−1
dx2

+O(dx2) (6)

For i=1:

f′
1 =

−3f1 + 4f2 − f3
2 dx

+O(dx2) (7)
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f′′
1 =

6f1 − 15f2 + 12f3 − 3f4
dx2

+O(dx2) (8)

For i=N :

f′
N =

3fN − 4fN−1 + fN−2
2 dx

+O(dx2) (9)

f′′
N =

6fN − 15fN−1 + 12fN−2 − 3fN−3
dx2

+O(dx2) (10)

2.2. Fourth-order explicit di�erence schemes

For 2¡i¡N − 1:

f′
i =

fi−2 − 8fi−1 + 8fi+1 − fi+2
12 dx

+O(dx4) (11)

f′′
i =

−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2
12 dx2

+O(dx4) (12)

For i=1:

f′
1 =

−50f1 + 96f2 − 72f3 + 32f4 − 6f5
24 dx

+O(dx4) (13)

f′′
1 =

225f1 − 770f2 + 1070f3 − 780f4 + 305f5 − 50f6
60 dx2

+O(dx4) (14)

For i=2:

f′
2 =

−6f1 − 20f2 + 36f3 − 12f4 + 2f5
24 dx

+O(dx4) (15)

f′′
2 =

50f1 − 75f2 − 20f3 + 70f4 − 30f5 + 5f6
60 dx2

+O(dx4) (16)

f′′
2 =

11f1 − 20f2 + 6f3 + 4f4 − f5
12 dx2

+O(dx3) (17)

The use of a fourth- and third-order approximations for i=2 and N − 1 is discussed in
the section considering the numerical results. The approximations for i=N and N − 1 were
analogous to the approximations for i=1 and 2, the only modi�cation was in the sign of the
�rst derivative, as one can observe in the approximations of second-order accuracy.

2.3. Fourth-order compact di�erence schemes

In this scheme, to �nd the values of the derivatives a matrix must be solved, where all the
derivatives in a grid line are treated simultaneously.
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For the �rst derivative, at the boundary, i=1:

f′
1 + 3f

′
2 =

1
6 dx

(−17f1 + 9f2 + 9f3 − f4) +O(dx3) (18)

For the interior points, the following approximation was used:

f′
i−1 + 4f

′
i + f

′
i+1 =

3
dx
(−fi−1 + fi+1) +O(dx4) (19)

For the second derivatives, at the boundary, i=1, the approximation adopted was

f′′
1 + 11f

′′
2 =

1
3 dx2

(39f1 − 81f2 + 45f3 − 3f4) +O(dx3) (20)

For the interior points, the following approximation was used:

f′′
i−1 + 10f

′′
i + f

′′
i+1 =

12
dx2
(fi−1 − 2fi + fi+1) +O(dx4) (21)

2.4. Sixth-order compact di�erence schemes

The sixth-order compact approximations proposed here di�er from the approximations given
by Lele [9] in the discretization of the boundary and near-boundary points. At the boundaries,
a third-order approximation is used by Lele, whereas for points next to the boundaries he used
a fourth-order approximation. In the current work the use of a greater order approximations
at these boundaries was necessary. Therefore, a �fth-order approximation was used for the
boundary points. For points next to the boundaries, a sixth-order approximation was used.
The details of the discretization scheme were as follows. For the �rst derivative, at the

boundary, i=1:

f′
1 + 4f

′
2 =

1
24 dx

(−74f1 + 16f2 + 72f3 − 16f4 + 2f5) +O(dx5) (22)

For the points next to the boundary, i=2:

f′
1 + 6f

′
2 + 2f

′
3 =

1
120 dx

(−406f1 − 300f2 + 760f3 − 80f4 + 30f5 − 4f6) +O(dx6) (23)

For the points at the opposite boundary, i=N and N−1, similar approximations were used.
For the interior points, a sixth-order Pad�e approximation was used:

f′
i−1 + 3f

′
i + f

′
i+1 =

1
12 dx

(−fi−2 − 28fi−1 + 28fi+1 + fi+2) +O(dx6) (24)

The second derivatives, at the boundary, i=1, were discretized using a �fth-order asym-
metric approximation:

13f′′
1 + 137f

′′
2 =

1
120 dx2

(9775f1 − 20285f2 + 11170f3 − 550f4

−145f5 + 36f6) +O(dx5) (25)
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Figure 1. Modi�ed wavenumber vs wavenumber for �rst derivative approximations—real part.

For the points near the boundary, i=2, a sixth-order asymmetric approximation was used:

f′′
1 + 12f

′′
2 + 3f

′′
3 =

1
360 dx2

(4834f1 − 8424f2 + 1890f3 + 2320f4

−810f5 + 216f6 − 26f7) +O(dx6) (26)

For the interior points a sixth-order Pad�e approximation was used:

2f′′
i−1 + 11f

′′
i + 2f

′′
i+1 =

1
4 dx2

(3fi−2 + 48fi−1 − 102fi + 48fi+1 + 3fi+2) +O(dx6) (27)

For the points at the opposite boundary, i=N and N − 1, similar approximations to the
ones used for points i=1 and 2 were used.
A Fourier analysis of the �nite di�erence schemes were performed and the results are

shown in Figures 1–4. Plots of the real part of the modi�ed wavenumber of the �nite dif-
ference schemes against the wavenumber for the �rst derivative calculation are presented in
Figure 1. In this �gure the resolution characteristics of the di�erent schemes can be compared.
The wavenumber was normalized by kmax =�=�x. According to Reference [9], the di�erence
between the modi�ed wavenumber and the exact (spectral) value can be associated with a
dispersion error. In Figures 1–4, the wavenumber is related to the number of points (N ) per
wavelength by k=1=((N − 1)=2). In Figure 2, the imaginary part of the modi�ed wavenumber
of the �nite di�erence schemes against the wavenumber of the �nite di�erence schemes for
the �rst derivative calculation is shown. The exact result should be zero for all wavenumbers,
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Figure 2. Modi�ed wavenumber vs wavenumber for �rst derivative approximations—imaginary part.

and the di�erence can be associated with a dissipation of the numerical scheme [9]. The real
and the imaginary parts of the modi�ed wavenumber of the �nite di�erence schemes for the
second derivative calculation is shown in Figures 3 and 4. In this analysis, it can be observed
that the sixth-order compact scheme gives the best result for both �rst and second derivative
calculations.
To solve the Poisson equation, a line successive over-relaxation (LSOR) method was used.

The method was a combination of a fourth-order explicit approximation in the x direction
and a sixth-order compact approximation in the y direction. Some tests were made using a
full sixth-order compact approximation method and no relevant di�erences in the results were
found. The full sixth-order compact method required a larger computational e�ort, therefore,
in these simulations, the combination method was adopted.
Three types of boundary conditions are needed to be speci�ed: in�ow boundary condition,

wall boundary condition and out�ow boundary condition.
At the inlet, the boundary condition was speci�ed by superposing a small disturbance onto

the laminar Poiseuille �ow velocity U (y) and vorticity �z(y) distributions:

u(x0; y; t) =U (y) + u′(x0; y; t)

v(x0; y; t) = v′(x0; y; t) (28)

!z(x0; y; t) =�z(y) +!′
z(x0; y; t)
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Figure 3. Di�erencing error for second derivative approximations vs wavenumber—real part.

The slope of the small disturbance was given by the solution of a linear stability analysis.
The Orr–Sommerfeld equation was solved and the disturbances were built from the resulting
eigenfunctions and eigenvalues.
At the wall, no-slip boundary conditions were imposed:

u= v=0 (29)

As adopted by Fasel [19], the vorticity at the wall was calculated from the Poisson equation.
Equation (4), applied at the wall, where the second derivative of u vanishes, gives:

@!z
@x

=− @
2v
@y2

(30)

This equation was discretized using, for the second derivative in the normal direction:

@2v
@y2

=−216vi; j+1 − 135vi; j+2 + 80vi; j+3 − 33:75vi; j+4 + 8:64vi; j+5 − vi; j+6
18�y2

(31)

and the vorticity was calculated with the approximation:

!i;1 =
�x
57

[
10
@2v
@y2 i−2;1

+ 57
@2v
@y2 i−1;1

+ 24
@2v
@y2 i;1

− @2v
@y2 i+1;1

+ 33!i−2;1 + 24!i−1;1

]
(32)

These approximations take into account that @v=@y=0 at the wall, ensuring divergence-free
velocity �eld at this boundary.
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Figure 4. Di�erencing error for second derivative approximations vs wavenumber—imaginary part.

At the out�ow boundary, the following condition was used:

@2v(X; y; t)
@x2

=−�2r v′(X; y; t) (33)

where the term v′ is the disturbance normal velocity component (Equation (34)) and X stands
for the last point in the x direction. This condition was used in the Poisson equation (4), where
the v(X; y; t) velocity component is computed. The u velocity component was computed using
the continuity equation, and the !z was obtained directly from the integration of the vorticity
transport equation.
The boundary condition given by Equation (33) corresponds to the second derivative of

an oscillatory disturbance with streamwise wavenumber �r at a given time t. This allows the
disturbances to pass through this boundary without re�ections. The streamwise wavenumber
is given by the linear stability solution for the considered frequency and Reynolds number.

3. LINEAR STABILITY THEORY

In order to test the numerical method described above, results for plane Poiseuille �ow per-
turbed by small amplitude periodic disturbances were compared with linear stability theory
results. The problem is illustrated schematically in Figure 5. The characteristic length scale L
was half the channel height H , and the characteristic velocity scale was U (y=H).
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Y

H

H

x

y

U(y)

u  = v = 0

u  = v = 0

Figure 5. Schematic illustration of the domain and coordinate system for Poiseuille
�ow stability numerical simulation.

The linear stability theory assumes that the disturbances propagate in the �ow as wave struc-
tures and gives a relationship between wavenumber �r , frequency !t , wave speed c=!t=�r
and growth rate �i, such that:

v′(x; y; t)= v̂(y)ei(�rx+i�i)−i!tt (34)

where v′(x; y; t) represents the wall normal component of velocity and v̂(y) is the complex
amplitude distribution. The vorticity disturbance is represented likewise. The Navier–Stokes
equations are simpli�ed assuming that the instantaneous velocity can be decomposed into a
parallel mean components U (y) and an in�nitesimal disturbance. The resulting equation is
the Orr–Sommerfeld equation:

�(U − c)(v′′ − �2v)−U ′′�v=− i
Re
(vIV − 2�2v′′ + �4v) (35)

The Orr–Sommerfeld equation is an eigenvalue problem which leads to the stability diagram
presented in Figure 6. This eigenvalue problem is solved using a shooting method [20]. The
neutral curve, �i=0 separates the unstable region (�i¡0) from the stable region (�i¿0).
In the present formulation the disturbances grow or decay in the downstream direction. The

temporal analysis, where the disturbances grow or decay in time, is much less computationally
intensive, but the spatial approach adopted in the present work was more consistent with the
�ow physics.
Three di�erent test cases were considered, namely, an asymptotically stable case, a nearly

neutrally stable case and an asymptotically unstable case, these cases are indicated in Figure 6
by points ‘A’, ‘B’ and ‘C’, respectively. The growth rates, wavenumbers and frequencies for
these three cases are presented in Table I. The case ‘B’ is hereafter referred to as neutral
case, although it is asymptotically stable with a very small growth rate, as one can observe
in Table I.
In order to carry out the numerical experiments, the laminar Poiseuille �ow velocity dis-

tribution was perturbed at the inlet boundary. The disturbance initial amplitude was equal
to 5× 10−4. The spatial evolution of these disturbance were compared to the corresponding
linear stability results at various downstream positions. The results are presented in the next
section.
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Figure 6. Neutral curve for Poiseuille �ow.

Table I. Eigenvalues for the test cases.

A B C

Re 5000 10000 10000
�r 1.157 1.095 1.000
�i 0.010 9:88× 10−5 −0.010
!t 0.330 0:270 0.2375

4. NUMERICAL RESULTS

To carry out the numerical experiments, a rectangular domain extending over 16 Tollmien–
Schlichting wavelengths in the streamwise direction was set. In order to test the di�erent spatial
discretization methods, the number of grid points taken per Tollmien–Schlichting wavelength
and the number of points in the wall normal direction were di�erent for each simulation. The
number of grid points per Tollmien–Schlichting wavelength tested were 6; 8; 12; 16 and 32. In
the wall normal direction 65; 81; 121; 161 and 321 grid points were used. The number of time
steps per wave-period used was 48, when using 6; 8 or 12 grid points per wavelength, and 128,
when using 16 or 32 grid points per Tollmien–Schlichting wavelength. The microcomputer
used for all the simulations was an Atlon AMD 2000 XP.

4.1. Sixth-order compact approximation results

First the Poiseuille �ow was simulated with the introduction of a stable, a neutral and an
unstable disturbances using a sixth-order compact approximation for the spatial derivatives.
Figure 7 shows a comparison between the numerical results and the LST results for the
amplitude ratio (A=A0) along the streamwise direction for a stable, a neutral and an unstable
test case. In the �gure, A stands for the amplitude of the disturbances, and A0 is the amplitude
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Figure 7. Sixth-order compact approximations—ampli�cation results for the three test
cases. Comparisons between numerical results (dots) and the LST results (lines).

imposed at x=0. Several simulations with di�erent number of grid points were performed.
These simulations show that using the sixth-order compact approximations the results were
accurate even with only 6 grid points per Tollmien–Schlichting wavelength and 65 grid points
in the wall normal direction. The CPU time for this run was 41.89 s. Other simulations
lowering the number of points in both direction were made, but the accuracy of the results
reduced signi�cantly.
Hereafter, the results are indicated by a label N ×M , where N is the number of points

used per Tollmien–Schlichting wavelength and M is the number of points used in the wall
normal direction. In Figure 8, for the neutral test case the phase distribution in the wall normal
direction of the streamwise disturbance velocity component is plotted. This phase distribution
was obtained by a temporal Fourier analysis of the disturbances. With this analysis one can
obtain the real and the imaginary part of the wall normal disturbance velocity component v.
The phase can be computed using the formula phase= a tan(vi=vr). The streamwise position
adopted for the comparison of the results was x=45:89. This streamwise position corresponds
to half of channel length. The curves were plotted for half the channel height. The expected
phase distribution, obtained with the LST is also plotted. The result obtained with the coarsest
mesh (6× 65) is still in good agreement with the LST. The phase plot gives quantitative
information about the dispersion error.
For the next results, the test case used to compare the di�erent spatial di�erence schemes

and grid re�nement was the neutral case (case ‘B’).

4.2. Second-order approximation results

The most re�ned grid mesh in this test had 32 points per Tollmien–Schlichting wavelength
and 321 points in the wall normal direction. The total computing time for this simulation was
8301.8 s or 2 h 18min and 21.8 s. In Figure 9, one can see that even by using this number
of points the result obtained was not very accurate. In the same �gure, results of three other
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Figure 8. Phase results with di�erent mesh sizes for sixth-order compact scheme at x=45:89.
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Figure 9. Second-order approximations—ampli�cation results.

simulations using di�erent mesh spacing are plotted. Lowering the number of grid points in
any direction results in larger error.
Figure 10 shows the phase distribution plot for the second-order scheme. It shows that a

large number of grid points were required to keep the dispersion within acceptable values.
The disturbance normal velocity component distribution along the streamwise direction at

the centre of the channel (y=H) is plotted in Figure 11. The expected velocity distribution
obtained with the LST is also plotted. This plot shows the e�ects of dispersion (phase speed
error) and growth rate for the second-order scheme for di�erent grid re�nements.
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Figure 10. Phase results with di�erent mesh sizes for second-order approximations at x=45:89.

x

v-
di

st
ur

ba
nc

e 
ve

lo
ci

ty

20 25 30 35 40 45 50

-0.0005

-0.0004

-0.0003

-0.0002

-1E-04

0

0.0001

0.0002

0.0003

0.0004

0.0005

32 x 321
32 x 161
16 x 161
8 x 81

LST

Figure 11. Wall normal velocity component distribution along the stream-
wise direction, at the centre of the channel.

4.3. Fourth-order explicit approximation results

As one can see in Figure 12, curve 12× 121 a, for this scheme, in a mesh using 12× 121
grid points, the disturbances were ampli�ed instead of damped with �i=−9:88× 10−5. While
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Figure 12. Fourth-order explicit approximations—ampli�cation results.

investigating the possible reasons for this numerical instability, it was found that replac-
ing the fourth-order non-centred approximation, for points next to the boundary (i=2 and
N − 1), for the second derivative by a non-centred third-order approximation, the instability
was eliminated. It can be observed in the Fourier analysis of the di�erence schemes, given
by Figures 3 and 4, that the third-order approximation is more suitable for this kind of study.
The results of the simulations are shown in Figure 12—12× 121 b. Using 12 points per
Tollmien–Schlichting wavelength and 121 points in the wall normal direction the results ob-
tained were in good agreement with the LST. The computing time of this simulation was
237.54 s. In the same �gure the results of other simulations with di�erent number of grid
points per Tollmien–Schlichting wavelength and in the wall normal direction are plotted.
Again, lowering the number of grid points results in a strong amplitude decay.
Figure 13 shows the wall normal phase distribution of the streamwise disturbance velocity

component in the wall normal direction. The results obtained with 12× 121 grid points were
in good agreement with the LST. Reducing the number of grid points results in a dispersion
error. By comparing Figure 8 with Figure 13, one �nds that the phase distribution obtained
with 8× 81 mesh with this approximations was worse than the result obtained with 6× 65
mesh using sixth-order compact approximations.

4.4. Fourth-order compact approximation results

As shown in Figure 14, the results obtained with this scheme were accurate with as little as
8 points per Tollmien–Schlichting wavelength. This result was obtained using 121 points in
the wall normal direction. The computing time for this simulation was 129.48 s. As shown in
Figure 14, lowering the number of grid points in the wall normal direction to 81 introduced
dissipation in the solution. However, no dispersion error was introduced, as one can see in
Figure 15. In this �gure one can observe that the dispersion error was comparatively small,
even for a coarse grid (6× 65), although with a greater dissipation.
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Figure 13. Phase results with di�erent mesh sizes for fourth-order explicit schemes at x=45:89.
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Figure 14. Fourth-order compact approximations—ampli�cation results.

The main advantage of this scheme, when compared with the results obtained with fourth-
order explicit scheme was that less points per Tollmien–Schlichting wavelength were needed
to capture the correct phase.
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Figure 15. Phase results with di�erent mesh sizes for fourth-order compact schemes at x=45:89.

5. CONCLUSIONS

In this paper, the in�uence of the spatial discretization scheme on the evolution of stability
waves was investigated. The second-order approximation was too dissipative and the grid
re�nement required to obtain reliable results makes this method exceedingly expensive for
these kind of study. The time simulation with the �nest grid tested with this method took
almost 200 times the e�ort of the coarsest grid using sixth-order compact approximations, and
the solution obtained was not nearly as good.
For the fourth-order explicit approximation, one can observe that the number of points

required per Tollmien–Schlichting wavelength was greater than that with the fourth-order
compact approximation. It was observed that non-centred approximations near the boundary
for the second derivative can introduce numerical ampli�cation in the simulation, resulting in
a non-physical solution. This has to be checked when implementing an explicit scheme.
The results with the fourth-order compact scheme showed that the required number of

points per Tollmien–Schlichting wavelength was greater than the minimum required when
using the sixth-order compact approximations for reliable results. The number of points in the
wall normal direction required was much greater, 121 for fourth-order compact approximation
against 65 for sixth-order compact approximation.
The sixth-order compact scheme showed good agreement with the linear stability theory,

even when using a ‘coarse’ grid with 6 points per Tollmien–Schlichting wavelength and 65
points in the wall normal direction.
Both compact schemes showed phase results better than the non-compact ones for the same

wavenumber. These methods should be used when studding wave propagation to minimize
dispersion errors.
The main conclusion is that using compact high-order di�erence schemes in numerical

studies can reduce computational e�ort. These methods should be used in transitional and
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turbulent �ow simulations where a wide range of length and time scales have to be accurately
resolved.
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